



## **Dual Linear Voltage Regulator for DDR-I and DDR-II Memory**

#### **Features**

- Fully integrated power solution for DDR memory
- Ideal for DDR-I (2.5 $V_{DDQ}$ ) and DDR-II (1.8 $V_{DDQ}$ )
- Lowest system cost and smallest footprint with just two external output capacitors
- Two linear regulators:
  - V<sub>DDQ</sub> regulator with a maximum output current of 1.5A shared by DRAM and V<sub>TT</sub> regulator
  - source-sink  $V_{TT}$  regulator with maximum output current of 0.5A (DDR-I) or 0.3A (DDR-II)
- Fault output indicates overcurrent condition in either regulator, under voltage lock-out and overtemperature condition
- Reverse current protection if host is powered off
- PSOP-8 package with integrated heat spreader
- Lead-free versions available

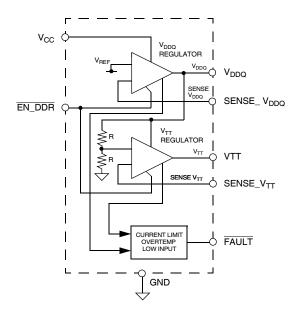
## **Applications**

- DDR-I and DDR-II memory power for:
  - Set Top Boxes, DVD Players, Games
  - Digital TVs, Flat Panel Displays
  - Printers, Digital Projectors
  - Embedded systems
  - Communications systems

#### **Product Description**

The CM3121 provides an integrated power solution for DDR-I and DDR-II memory systems in consumer electronics applications. The CM3121 is ideal for a 2.8V to 3.6V supply for DDR-I memory and 2.2V to 2.8V for DDR-II memory. The CM3121 features two independent linear regulators for V<sub>DDQ</sub> and V<sub>TT</sub> supply regulation. The default voltage for V<sub>DDQ</sub> is 2.5V. The V<sub>DDQ</sub> regulator SENSE pin allows for setting V<sub>DDQ</sub> in the 2.2V to 2.8V range, or DDR-II memories from 1.7V to 1.9V. The V<sub>TT</sub> regulator output is always half the V<sub>DDQ</sub> voltage, derived internally. A capacitor should be connected to each of the two outputs.

When EN\_DDR is set high, the two DDR regulators are disabled to minimize overall system power dissipation such as when memory is in standby.


The FAULT pin goes low whenever either of the two regulators goes into current limit mode, the input voltage drops too far or if overtemp occurs.

The CM3121 is available in a PSOP-8 package that has excellent thermal dissipation. It is available with optional lead-free finishing.

#### **Typical Application Circuit**

# 2.8V to 3.3V EN DDR DDR GND

#### **Circuit Schematic**



© 2004 California Micro Devices Corp. All rights reserved

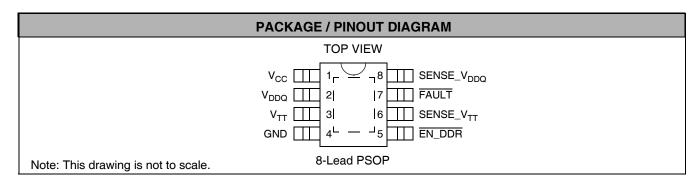




#### **Functional Description**

The CM3121 provides power for DDR-I/DDR-II memories from two voltage regulators on-chip. There is an over-temperature thermal shutdown if any of the regulators overheat. Each regulator also has reverse current protection in the event of any being shut down.

The V<sub>DDQ</sub> linear regulator can provide 2.5V/1.8V for DDR-I/-II memory at up to 1.5A. An external feedback resistor divider R1 and R2, when connected to the SENSE\_V<sub>DDQ</sub> pin, enables selection of V<sub>DDQ</sub> output voltages from 2.2V to 2.8V for use with DDR-I memories requiring other than 2.5V for V<sub>DDQ</sub> (see Figure 5). In this mode, the voltage on VDDQ is determined as follows:


$$V_{DDQ} = 1.25V \times \frac{(R1+R2)}{R2}$$

When SENSE\_V<sub>DDQ</sub> is connected to GND or left open,  $V_{DDQ}$  is fixed at 2.50V (and  $V_{TT}$  at 1.25V). For DDR-II operation,  $V_{DDO}$  can be set from 1.7V to 1.9V. The  $V_{TT}$ regulator is a linear source-sink regulator powered

from the V<sub>DDO</sub> output that supplies the V<sub>TT</sub> supply required by DDR-I memory termination resistors. This regulator sinks or sources up to 0.5A. The V<sub>TT</sub> output voltage accurately tracks V<sub>DDO</sub>/2 to 1%. When there is no V<sub>CC</sub> provided, V<sub>TT</sub> is powered down and its output is OV. This regulator has overload current limiting of 0.6A minimum.

The EN\_DDR pin when set active low enables the CM3121 to operate in normal mode with V<sub>DDO</sub> and V<sub>TT</sub> active. When EN DDR is high, the CM3121 is disabled and both  $V_{DDO}$  and  $V_{TT}$  are set to 0V.

The FAULT output is normally at logic high but when an overcurrent occurs on either V<sub>DDQ</sub> or V<sub>TT</sub> outputs, FAULT goes active low, and remains low as long as the overcurrent fault persists. Also if the chip goes into thermal overload, or the input voltage V<sub>CC</sub> drops sufficiently that the chip goes into Under Voltage Lock-Out mode (UVLO), FAULT goes active low, and remains low as long as the condition persists.



| PIN DESCRIPTIONS |                                                                          |                                                                      |  |  |  |
|------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------|--|--|--|
| LEAD             | NAME                                                                     | DESCRIPTION                                                          |  |  |  |
| 1                | V <sub>CC</sub>                                                          | Input supply.                                                        |  |  |  |
| 2                | $V_{DDQ}$                                                                | V <sub>DDQ</sub> output.                                             |  |  |  |
| 3                | V <sub>TT</sub>                                                          | V <sub>TT</sub> output for termination resistors or V <sub>REF</sub> |  |  |  |
| 4                | GND                                                                      | Ground reference.                                                    |  |  |  |
| 5                | EN_DDR                                                                   | Enable DDR power. Active low input.                                  |  |  |  |
| 6                | 6 SENSE_V <sub>TT</sub> Sense input for V <sub>TT</sub> rail adjustment. |                                                                      |  |  |  |
| 7                | 7 FAULT Overcurrent Fault / UVLO indication, active low output.          |                                                                      |  |  |  |
| 8                | SENSE_V <sub>DDQ</sub>                                                   | Sense input for V <sub>DDQ</sub> rail adjustment.                    |  |  |  |
| PAD              | GND                                                                      | Tied to ground reference.                                            |  |  |  |

© 2004 California Micro Devices Corp. All rights reserved



# **Ordering Information**

| PART NUMBERING INFORMATION       |         |                             |              |                     |              |  |  |
|----------------------------------|---------|-----------------------------|--------------|---------------------|--------------|--|--|
| Standard Finish Lead-free Finish |         |                             |              |                     |              |  |  |
|                                  |         | Ordering Part Ordering Part |              |                     |              |  |  |
| Leads                            | Package | Number <sup>1</sup>         | Part Marking | Number <sup>1</sup> | Part Marking |  |  |
| 8                                | PSOP-8  | CM3121-02SB                 | CM3121 02SB  | CM3121-02SH         | CM3121 02SH  |  |  |

Note 1: Parts are shipped in Tape & Reel form unless otherwise specified.

# **Specifications**

| ABSOLUTE MAXIMUM RATINGS                                                             |                                                                 |              |  |  |  |  |  |
|--------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------|--|--|--|--|--|
| PARAMETER                                                                            | RATING                                                          | UNITS        |  |  |  |  |  |
| ESD (Human Body Model)                                                               | ±2000                                                           | V            |  |  |  |  |  |
| Pin Voltages  V <sub>CC</sub> EN_DDR, SENSE_V <sub>DDQ</sub> , SENSE_V <sub>TT</sub> | [GND - 0.6] to [+6.5]<br>[GND - 0.6] to [V <sub>CC</sub> + 0.6] | <b>&gt;</b>  |  |  |  |  |  |
| Storage Temperature Range                                                            | -40 to +150                                                     | °C           |  |  |  |  |  |
| Operating Temperature Range Ambient Junction                                         | -40 to +85<br>0 to +125                                         | <b>ာိ</b> တိ |  |  |  |  |  |

| STANDARD OPERATING CONDITIONS          |                                 |       |  |  |  |  |  |
|----------------------------------------|---------------------------------|-------|--|--|--|--|--|
| PARAMETER                              | RATING                          | UNITS |  |  |  |  |  |
| Ambient Operating Temperature Range    | -40 to +85                      | °C    |  |  |  |  |  |
| 1. V <sub>DDQ</sub> Regulator          |                                 |       |  |  |  |  |  |
| DDR-I Supply Voltage V <sub>CC</sub>   | [V <sub>DDQ</sub> + 0.3] to 3.6 | V     |  |  |  |  |  |
| DDR-II Supply Voltage V <sub>CC</sub>  | 2.2 to 2.8                      | V     |  |  |  |  |  |
| Load Current (note 1)                  | 0 to 1500                       | mA    |  |  |  |  |  |
| C <sub>CC</sub> , C <sub>DDQ</sub>     | 10, 10                          | μF    |  |  |  |  |  |
| 2. V <sub>TT</sub> Regulator           |                                 |       |  |  |  |  |  |
| DDR-I Supply Voltage V <sub>DDQ</sub>  | 2.3 to 2.8                      | V     |  |  |  |  |  |
| DDR-II Supply Voltage V <sub>DDQ</sub> | 1.7 to 1.9                      | V     |  |  |  |  |  |
| DDR-I Load Current                     | 0 to ±500                       | mA    |  |  |  |  |  |
| DDR-II Load Current                    | 0 to ±300                       | mA    |  |  |  |  |  |
| C <sub>TT</sub>                        | 47                              | μF    |  |  |  |  |  |

Note 1: The  $V_{DDQ}$  regulator provides power for both the memory load and the  $V_{TT}$  regulator, supplying a total of 1.5A to the  $V_{DDQ}$ and  $V_{TT}$  outputs. For example, if the  $V_{DDQ}$  load current is 1.2A, then the maximum  $V_{TT}$  load current will be 0.3A, regardless of the actual  $\ensuremath{V_{TT}}$  output current rating.

© 2004 California Micro Devices Corp. All rights reserved.



# Specifications (cont'd) **DDR-I Specifications**

| ELECTRICAL OPERATING CHARACTERISTICS (SEE NOTE1) |                                                 |                                                                                                                                                              |      |      |      |       |  |  |  |
|--------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|-------|--|--|--|
| SYMBOL                                           | PARAMETER                                       | CONDITIONS                                                                                                                                                   | MIN  | TYP  | MAX  | UNITS |  |  |  |
| General Pa                                       | General Parameters                              |                                                                                                                                                              |      |      |      |       |  |  |  |
| T <sub>OVER</sub>                                | Shutdown Junction Temperature                   |                                                                                                                                                              | -    | 150  | -    | °C    |  |  |  |
| T <sub>HYST</sub>                                | Junction Temp Hysterisis                        | IC in shutdown                                                                                                                                               | -    | 25   | -    | °C    |  |  |  |
| I <sub>CCN</sub>                                 | Normal Mode V <sub>CC</sub> Supply<br>Current   | EN_DDR = logic "0",<br>EN_CORE =logic "0"                                                                                                                    |      | 700  | 1100 | μΑ    |  |  |  |
| I <sub>CCQ</sub>                                 | Shutdown Mode V <sub>CC</sub> Supply<br>Current | EN_DDR = logic "1",<br>V <sub>DDQ</sub> = 0V, V <sub>TT</sub> = 0V                                                                                           |      | 2    | 10   | μΑ    |  |  |  |
| V <sub>IH</sub>                                  | EN_DDR Input High Threshold                     | V <sub>CC</sub> =3.3V                                                                                                                                        | 2.0  |      |      | V     |  |  |  |
| V <sub>IL</sub>                                  | EN_DDR Input Low Threshold                      | V <sub>CC</sub> =3.3V                                                                                                                                        |      |      | 0.4  | V     |  |  |  |
| UVLO                                             | Under Voltage Lock-Out                          | I <sub>DDQ</sub> = 10mA                                                                                                                                      |      |      | 1.8  | V     |  |  |  |
| t <sub>RISE</sub>                                | V <sub>DDQ</sub> Rise TIme                      | $V_{CC} = 3.3V, C_{DDQ} = 10\mu F$                                                                                                                           |      | 0.5  |      | ms    |  |  |  |
| V <sub>DDQ</sub> Regu                            | lator Parameters                                |                                                                                                                                                              |      |      |      |       |  |  |  |
| V <sub>CC MIN</sub>                              | Input Voltage                                   | $V_{DDQ} = 2.5V$ , $I_{DDQ} = 1.5A$ ,<br>SENSE_ $V_{DDQ} = 0V$ , Note 2                                                                                      | 2.80 |      |      | V     |  |  |  |
| V <sub>DDQ DEF</sub>                             | Default Output Voltage Range                    | $\begin{split} I_{DDQ} &= 0.01\text{A},  2.8\text{V} \leq \text{V}_{CC} \leq 3.6\text{V}, \\ \text{SENSE\_V}_{DDQ} &= 0\text{V},  \text{Note 2} \end{split}$ | 2.45 | 2.50 | 2.55 | V     |  |  |  |
| V <sub>DDQ ADJ</sub>                             | Adjustable Output Voltage<br>Range              | V <sub>CC</sub> = 3.6V, SENSE_V <sub>DDQ</sub> tied to external resistors R1 and R2, Note 2                                                                  | 1.6  |      | 2.8  | V     |  |  |  |
| V <sub>DDQ LD</sub>                              | Load Regulation                                 | $T_A = 25$ °C, $V_{CC} = 3.3V$ ,<br>0.01A $\leq I_{DDQ} \leq 1.0A$ , Note 2                                                                                  | -    | -    | 2.5  | %     |  |  |  |
| V <sub>DDQ LINE</sub>                            | Line Regulation                                 | $T_A = 25$ °C, $I_{DDQ} = 0.01$ A,<br>2.8V $\leq V_{CC} \leq 3.6$ V, Note 2                                                                                  | -1.0 | -    | 1.0  | %     |  |  |  |
| e <sub>N DDQ</sub>                               | Output Noise Voltage                            | BW = $10Hz - 100kHz$ , $C_{DDQ} = 10\mu F$                                                                                                                   |      | 49   |      | μVrms |  |  |  |
| I <sub>DDQ LIM</sub>                             | Current Limit                                   | Note 2                                                                                                                                                       | 1.7  | 2.0  |      | Α     |  |  |  |
| I <sub>DDQ SC</sub>                              | Short Circuit Current                           | V <sub>DDQ</sub> < 0.3V                                                                                                                                      |      | 0.5  |      | Α     |  |  |  |



| ELECTRICAL OPERATING CHARACTERISTICS (CONT'D) (SEE NOTE1) |                                      |                                                                              |       |       |       |       |  |  |
|-----------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------|-------|-------|-------|-------|--|--|
| V <sub>TT</sub> Regula                                    | V <sub>TT</sub> Regulator Parameters |                                                                              |       |       |       |       |  |  |
| V <sub>TT</sub>                                           | Output Voltage Range                 | $V_{DDQ} = 2.5V, I_{TT} = 0.01A,$                                            | 1.20  | 1.25  | 1.30  | V     |  |  |
| V <sub>TT REF</sub>                                       | Output Voltage Range                 | V <sub>DDQ</sub> = 2.500V, I <sub>TT</sub> = 0.01A                           | 1.225 | 1.250 | 1.275 | V     |  |  |
| V <sub>TT LD</sub>                                        | Load Regulation                      | $T_A = 25^{\circ}C$ , $V_{DDQ} = 2.5V$ ,<br>$0.01A \le I_{TT} \le \pm 0.5A$  | -1.0  | -     | 1.0   | %     |  |  |
| V <sub>TT LINE</sub>                                      | Line Regulation                      | $T_A = 25^{\circ}C$ , $I_{TT} = 0.01A$ , $2.8V \le V_{CC} \le 3.6V$ , Note 2 | -1.0  | -     | 1.0   | %     |  |  |
| e <sub>N TT</sub>                                         | Output Noise Voltage                 | BW = $10Hz - 100kHz$ , $C_{TT} = 10\mu F$                                    |       | 51    |       | μVrms |  |  |
| I <sub>TT LIM</sub>                                       | Current Limit                        |                                                                              | 0.6   | 8.0   |       | Α     |  |  |
| I <sub>TT SC</sub>                                        | Short Circuit Current                | V <sub>TT</sub> < 0.3V                                                       |       | 0.3   |       | Α     |  |  |

Note 1: All parameters specified at  $T_A = -40^{\circ}C$  to  $+85^{\circ}C$  unless otherwise noted.

Note 2: Note that the  $I_{DDQ}$  current specified is the load current output from the  $V_{DDQ}$  pin.  $V_{DDQ}$  also supplies current internally to the V<sub>TT</sub> regulator when it is sourcing current. The maximum source current can be up to 0.5A. So the maximum total current from the  $V_{DDQ}$  regulator is the external  $V_{DDQ}$  current  $I_{DDQ}$  added to the maximum  $V_{TT}$  sourcing current  $I_{TT}$ . All load currents are specified as such, but the  $V_{\text{DDQ}}$  current limit is specified at a current just above the total maximum current.

#### **DDR-II Specifications**

| ELECTRICAL OPERATING CHARACTERISTICS (SEE NOTE 3) |                                                 |                                                                    |     |     |      |       |  |  |
|---------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------|-----|-----|------|-------|--|--|
| SYMBOL                                            | PARAMETER                                       | CONDITIONS                                                         | MIN | TYP | MAX  | UNITS |  |  |
| General Pa                                        | rameters                                        |                                                                    |     |     |      |       |  |  |
| T <sub>OVER</sub>                                 | Shutdown Junction Temperature                   |                                                                    | -   | 150 | -    | °C    |  |  |
| T <sub>HYST</sub>                                 | Junction Temp Hysterisis                        | IC in shutdown                                                     | -   | 25  | -    | °C    |  |  |
| I <sub>CCN</sub>                                  | Normal Mode V <sub>CC</sub> Supply<br>Current   | EN_DDR = logic "0",                                                |     | 700 | 1100 | μΑ    |  |  |
| I <sub>CCQ</sub>                                  | Shutdown Mode V <sub>CC</sub> Supply<br>Current | EN_DDR = logic "1",<br>V <sub>DDQ</sub> = 0V, V <sub>TT</sub> = 0V |     | 2   | 10   | μА    |  |  |
| V <sub>IH</sub>                                   | EN_DDR Input High Threshold                     | V <sub>CC</sub> =3.3V                                              | 2.0 |     |      | V     |  |  |
| V <sub>IL</sub>                                   | EN_DDR Input Low Threshold                      | V <sub>CC</sub> =3.3V                                              |     |     | 0.4  | V     |  |  |
| UVLO                                              | Under Voltage Lock-Out                          | I <sub>DDQ</sub> = 10mA                                            |     |     | 1.8  | V     |  |  |
| t <sub>RISE</sub>                                 | V <sub>DDQ</sub> Rise TIme                      | $V_{CC} = 3.3V, C_{DDQ} = 10\mu F$                                 |     | 0.5 |      | ms    |  |  |



|                        | ELECTRICAL OPERAT                  | ING CHARACTERISTICS (CC                                                                     | NT'D) | (SEE NO | TE 3) |       |
|------------------------|------------------------------------|---------------------------------------------------------------------------------------------|-------|---------|-------|-------|
| V <sub>DDQ</sub> Regu  | lator Parameters                   |                                                                                             |       |         |       |       |
| V <sub>CC MIN</sub>    | Input Voltage                      | $V_{DDQ} = 2.5V$ , $I_{DDQ} = 1.5A$ ,<br>SENSE_ $V_{DDQ} = 0V$ , Note 4                     | 2.2   |         |       | V     |
| $V_{\mathrm{DDQ}}$     | Default Output Voltage Range       | $I_{DDQ} = 0.01A, V_{CC} = 3.3V,$<br>SENSE_V <sub>DDQ</sub> = 0V, Note 4                    | 1.75  | 1.80    | 1.85  | V     |
| V <sub>DDQ ADJ</sub>   | Adjustable Output Voltage<br>Range | V <sub>CC</sub> = 3.3V, SENSE_V <sub>DDQ</sub> tied to external resistors R1 and R2, Note 4 | 1.6   |         | 2.8   | V     |
| V <sub>DDQ LD</sub>    | Load Regulation                    | $T_A = 25^{\circ}C$ , $V_{CC} = 2.5V$ ,<br>0.01A $\leq I_{DDQ} \leq 1.0A$ , Note 4          | -     | -       | 2.5   | %     |
| V <sub>DDQ LINE</sub>  | Line Regulation                    | $T_A = 25^{\circ}C$ , $I_{DDQ} = 0.01A$ , $2.2V \le V_{CC} \le 2.8V$ , Note 4               | -1.0  | -       | 1.0   | %     |
| e <sub>N DDQ</sub>     | Output Noise Voltage               | BW = $10Hz - 100kHz$ , $C_{DDQ} = 10\mu F$                                                  |       | 49      |       | μVrms |
| I <sub>DDQ LIM</sub>   | Current Limit                      | Note 4                                                                                      | 1.7   | 2.0     |       | Α     |
| I <sub>DDQ SC</sub>    | Short Circuit Current              | V <sub>DDQ</sub> < 0.3V                                                                     |       | 0.5     |       | Α     |
| V <sub>TT</sub> Regula | tor Parameters                     |                                                                                             | l     |         |       |       |
| V <sub>TT</sub>        | Output Voltage Range               | $V_{DDQ} = 1.8V, I_{TT} = 0.01A,$                                                           | 0.86  | 0.90    | 0.94  | V     |
| V <sub>TT LD</sub>     | Load Regulation                    | $T_A = 25^{\circ}C$ , $V_{DDQ} = 1.8V$ ,<br>$0.01A \le I_{TT} \le \pm 0.3A$                 | -1.0  | -       | 1.0   | %     |
| V <sub>TT LINE</sub>   | Line Regulation                    | $T_A = 25^{\circ}C, I_{TT} = 0A,$<br>$2.2V \le V_{CC} \le 2.8V$                             | -1.0  | -       | 1.0   | %     |
| e <sub>N TT</sub>      | Output Noise Voltage               | BW = 10Hz - 100kHz, C <sub>TT</sub> = 10μF                                                  |       | 51      |       | μVrms |
| I <sub>TT LIM</sub>    | Current Limit                      |                                                                                             | 0.4   | 0.6     |       | Α     |
| I <sub>TT SC</sub>     | Short Circuit Current              | V <sub>TT</sub> < 0.3V                                                                      |       | 0.3     |       | Α     |

Note 3: All parameters specified at  $T_A = -40^{\circ}C$  to  $+85^{\circ}C$  unless otherwise noted.

Note 4: Note that the  $I_{DDQ}$  current specified is the load current output from the  $V_{DDQ}$  pin.  $V_{DDQ}$  also supplies current internally to the V<sub>TT</sub> regulator when it is sourcing current. The maximum source current can be up to 0.5A. So the maximum total current from the  $V_{DDQ}$  regulator is the external  $V_{DDQ}$  current  $I_{DDQ}$  added to the maximum  $V_{TT}$  sourcing current  $I_{TT}$ . All load currents are specified as such, but the  $V_{\text{DDQ}}$  current limit is specified at a current just above the total maximum current.

| V <sub>CC</sub> (1) | EN_DDR | V <sub>DDQ OUT</sub> | V <sub>TT OUT</sub>  |
|---------------------|--------|----------------------|----------------------|
| 2.8V to 3.6V        | Low    | $V_{DDQ}$            | V <sub>DDQ</sub> / 2 |
| Х                   | High   | 0V                   | 0V                   |

Table 1: Truth Table for CM3121



#### **Performance Information**

Power Supply Ripple Rejection  $C_{CC}$  = 10 $\mu$ F,  $V_{CC}$  = 3.3V,  $I_{LOAD}$  = 50mA, PSRR measured with 50mV pk-pk sin wave on  $V_{CC}$ .

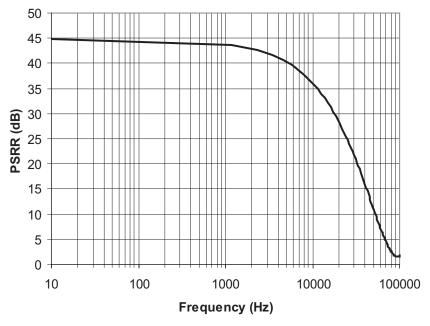



Figure 1.  $V_{DDQ}$  PSRR ( $V_{DDQ} = 2.5V$ )

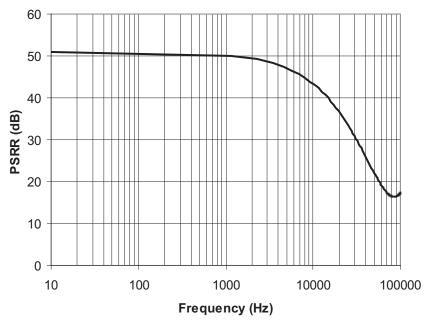



Figure 2.  $V_{TT}$  PSRR ( $V_{TT} = 1.25V$ )





#### Performance Information (cont'd)

#### **Typical Thermal Characteristics**

The overall junction to ambient thermal resistance  $(\theta_{JA})$  for device power dissipation  $(P_D)$  consists primarily of two paths in series. The first path is the junction to the case  $(\theta_{JC})$  which is defined by the package style, and the second path is case to ambient ( $\theta_{CA}$ ) thermal resistance which is dependent on board layout. The final operating junction temperature for any set of conditions can be estimated by the following thermal equation:

$$T_{JUNC} = T_{AMB} + P_D (\theta_{JC}) + P_D (\theta_{CA})$$
$$= T_{AMB} + P_D (\theta_{JA})$$

When a CM3121-02SB/SH (PSOP-8) is mounted on a double-sided printed circuit board with two square inches of copper allocated for "heat spreading," the resulting  $\theta_{JA}$  is 40°C/W. Based on the over temperature limit of 150° C with an ambient of 70°C, the available power of this package will be:

$$P_D = \frac{150^{\circ} C - 70^{\circ} C}{40^{\circ} C/W} = 2W$$

#### **PCB Layout Considerations**

The CM3121-02SB/SH has a heat spreader attached to the bottom of the PSOP-8 package in order for heat to be transferred more easily from the package to the PCB. The heat spreader is a copper pad of dimensions just smaller than the package itself. By positioning the matching pad on the PCB top layer to connect to the spreader during manufacturing, the heat will be transferred between the two pads. The drawing below shows the recommended PCB layout. Note that there are six vias on either side to allow the heat to dissipate into the ground and power planes on the inner layers of the PCB. Vias can be placed underneath the chip, but this can cause blockage of the solder. The ground and power planes should be at least 2 sq in. of copper by the vias. It also helps dissipation if the chip is positioned away from the edge of the PCB, and not near other heat-dissipating devices. A good thermal link from the PCB pad to the rest of the PCB will assure the best heat transfer from the CM3121 package to ambient,  $\theta_{JA}$ , of around 40°C/W.

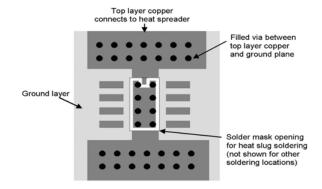



Figure 3. Recommended Heat Sink PCB Layout





## **Application Information**

#### **Other Applications**

The CM3121 can be used without any external resistors if a  $V_{DDQ}$  voltage of 2.5V is required by connecting the SENSE\_ $V_{DDQ}$  pin to GND.

Also in applications where a reference voltage ( $V_{REF}$ ) is required, a PCB trace directly from the  $V_{TT}$  pin can be used. The  $V_{TT}$  output pin has an error relative to  $V_{DDQ}/2$  of up to +/-25mV, which is well within most DDR system specs of +/-50mV. This is because the

 $V_{TT}$  output internally tracks the  $V_{DDQ}$  output very closely due to the matched on-chip resistors R that tap down from the  $V_{DDQ}$  rail, and the low offset voltage of the  $V_{TT}$  regulator. It is recommended that the  $V_{REF}$  trace be connected directly to the  $V_{TT}$  pin, to eliminate noise and ripple on the  $V_{TT}$  line caused by current switching

 $V_{DDQ}$ REGULATOR  $V_{DDQ}$ SENSE  $V_{DDQ}$ **EN DDR** Enable DDR **DDR** Memory # **MEMORY** V<sub>REF</sub>=1.25V **REGULATOR**  $V_{TT}=1.25V$ SENSE V<sub>TT</sub> **CPU** CURRENT LIMIT **FAULT** OVERTEMP CORE LOW INPUT + I/O GND

Figure 4. Typical Application for the CM3121



## **Application Information (cont'd)**

#### **DDR-II Application**

For DDR-II applications, it is recommended that a lower input voltage than 3.3V be applied to reduce overall power dissipation. The input voltage can be as low as 2.1V worst case, so an input voltage of 2.4V  $\pm 10\%$  would be the best input voltage for the least power dissipation. Also to obtain a V<sub>DDO</sub> voltage of 1.8V, a resistor divider comprising R1 = 56K and R2 = 130K would result in an output voltage of 1.79V for  $V_{DDQ}$ , and a  $V_{TT}$  of 0.895V.

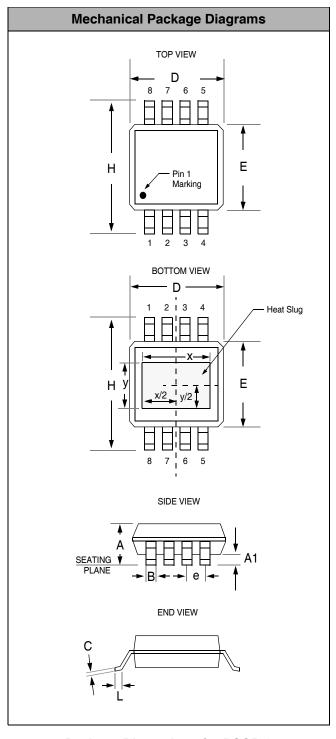
The maximum current IDDQ for the CM3121 in a DDR-II application is 1.5V, and the maximum for  $I_{TT}$  is 0.3V. This should be satisfactory for most DDR- II applications because the DDR- II memories do not require a V<sub>TT</sub>, so the only current needed is for either a reference voltage or a controller input.

 $^* V_{DDQ} = 1.25 V x$ R1 + R2 2.15V to 3.6V R2 REGULATOR V<sub>DDQ</sub>=1.8V<sup>\*</sup>  $V_{DDQ}$ SENSE Enable DDR DDR Memory # R2 MEMORY REGULATOR V<sub>TT</sub>=0.90V SENSE V<sub>TT</sub> CURRENT LIMIT CPU **FAULT** CORE LOW INPUT + I/O **GND** 

Figure 5. Minimal CM3132 DDR-II power solution.






#### **Mechanical Details**

#### **PSOP-8 Mechanical Specifications**

Dimensions for CM3121 devices packaged in an 8lead PSOP package with a heatspreader are shown below.

| PACKAGE DIMENSIONS     |                               |        |       |       |  |  |  |
|------------------------|-------------------------------|--------|-------|-------|--|--|--|
| Package                |                               | PSC    | OP-8  |       |  |  |  |
| Leads                  |                               |        | 8     |       |  |  |  |
| Dimensions             | Millir                        | neters | Inc   | hes   |  |  |  |
| Difficusions           | Min                           | Max    | Min   | Max   |  |  |  |
| Α                      | 1.30                          | 1.62   | 0.051 | 0.064 |  |  |  |
| A <sub>1</sub>         | 0.03                          | 0.10   | 0.001 | 0.004 |  |  |  |
| В                      | 0.33                          | 0.51   | 0.013 | 0.020 |  |  |  |
| С                      | 0.18                          | 0.25   | 0.007 | 0.010 |  |  |  |
| D                      | 4.83                          | 5.00   | 0.190 | 0.197 |  |  |  |
| Е                      | 3.81                          | 3.99   | 0.150 | 0.157 |  |  |  |
| е                      | 1.02                          | 1.52   | 0.040 | 0.060 |  |  |  |
| Н                      | 5.79                          | 6.20   | 0.228 | 0.244 |  |  |  |
| L                      | 0.41                          | 1.27   | 0.016 | 0.050 |  |  |  |
| x**                    | 3.30                          | 3.81   | 0.130 | 0.150 |  |  |  |
| у**                    | 2.29                          | 2.79   | 0.090 | 0.110 |  |  |  |
| # per tube             | 100 pieces*                   |        |       |       |  |  |  |
| # per tape<br>and reel | 2500 pieces                   |        |       |       |  |  |  |
|                        | Controlling dimension: inches |        |       |       |  |  |  |

<sup>\*</sup> This is an approximate number which may vary.



**Package Dimensions for PSOP-8** 

<sup>\*\*</sup> Centered on package centerline.